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Abstract The stationary phase point (SPP) method is introduced to treat the diffractive scin-
tillation. From weak scattering, where the SPP numberN = 1, to strong scattering (N ≫1),
via transitional scattering regime (N ∼2, 3), we find that the modulation index of intensity
experiences the monotonically increasing from 0 to 1 with the scattering strength, character-
ized by the ratio of Fresnel scalerF to diffractive scalerdiff .
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1 INTRODUCTION

As the radio waves propagate in the interstellar medium (ISM), the diffraction and refraction introduced
by small-scale and large-scale inhomogeneities lead to theflux variations or scintillations (review see
Rickett, 1977; 1990; 2006). The radio wave interference fringes are seen evolving with time, due to the
motions of source, observer and ISM, which can be explained in terms of wave scattering through a
random medium, with the electron density inhomogeneities being described by a power-law spectrum,
close to the Kolmogorov spectrum (Armstrong, Rickett & Spangler 1995; Cordes, Weisberg & Boriakoff
1985). As for the characteristic scales responsible for thescintillations, Fresnel length scale is defined by
rF =

√

z/k, wherez is the distance between the scattering screen and the observer’s plane andk = 2π/λ
is the wave number, and the diffractive scalerdiff is defined by writing the phase structure function in
the formsD(r) = (r/rdiff)α for a Kolmogorov spectrum of turbulence (see e.g. Narayan 1992 for a re-
view). In the weak scattering regime,rF/rdiff ≪ 1, the flux variation is interpreted in terms of weak
focussing due to phase curvature on the scattering screen onscale∼ rF. Whereas, in the strong scattering
regime (rF/rdiff ≫ 1) there are two variation scales, small diffractive scalerdiff and large refractive scale
rref = r2F/rdiff , caused by interference between the many coherent patches of sizerdiff over the scattering
screen. However, in the transitional scattering regime,rF/rdiff ∼ 1, which is applicable to most intra-day
variable extragalactic radio sources observed at frequencies between 1 and 10 GHz (see, e.g. Walker &
Wardle 1998), the flux variation scale is a little fuzzy becauserF, rdiff , andrref are very similar, perhaps a
mixing variation scale may be produced. The two time scales of spectrum intensity from the observations of
pulsars reveal variations of minutes to hours as a diffractive scintillation (see e.g. Scheuer 1968; Manchester
& Taylor 1977; Lyne & Smith 2005) and days to months as a refractive scintillation (see, e.g. Rickett 1984
for reviews; Kaspi & Stinebring 1992; Wang et al. 2005).

In the transitional scattering regime, where both geometric optics and wave optics are equally important,
with rdiff comparable torF, the structures on the scattering screen have a focal lengthcomparable to the
distance from the scattering screen, so the role of the caustic focussing will effect here.

The paper briefly introduces the unified descriptions of modulation index from weak, transitional and
strong scattering by the stationary phase point method (SPPM), which has been previously paid attention
by Gwinn et al. (1998) and recently applied to interpret the parabola phenomena occurring in the pulsar
secondary spectrum (Walker et al. 2004).
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Fig. 1 The illustration of one dimensional scattering screen.

2 THE STATIONARY PHASE APPROXIMATION

We consider the wavefield from a point source at infinity to be incident up on a single thin, one-dimensional
scattering screen, as described in Figure 1. For an incidentwavefield of unit amplitude the wavefield ob-
served at the central position on the line a distancez (r2F = z/k) from the scattering screen is (e.g. Born &
Wolf 1980)

u(z) =
1

√

2πr2F

∫ ∞

−∞

dx exp

[

i

(

x2

2r2F
+ φ(x)

)]

. (1)

To solve this we employ the method of stationary phase (e.g. Mandel & Wolf P.128), which states that
an integral of the form,

F (k) =

∫ ∞

−∞

f(x)eikg(x) dx, (2)

has an approximation containing contributions from critical points inside the boundary of integration
(−∞,∞):

F (k) ∼

(

2π

k

)1/2 n
∑

j=1

ǫj
|g′′(xj)|1/2

f(xj)e
ikg(xj), (3)

whereǫj = e±iπ/4 is according as g′′(xj) > 0 (< 0) for + (-) andxj are the points of stationary phase
which satisfy the condition

g′(xj) = 0. (4)

Applying the stationary phase approximation to Equation (1), one hasg(x) = k−1(φ(x) + x2/2r2F) and
hence

u(z) ≈

N
∑

j=1

uj , uj =
ǫj

√

|1 + r2Fφ
′′(xj)|

exp[ir2Fφ
′2(xj)/2 + iφ(xj)]. (5)

The mean intensity of the unit amplitude wave,〈I〉 = 1, is identified as the average value of the
second moment of the amplitude〈uu∗〉. Adding a subscriptN to denote the number of SPPs, in the SPP
approximation this is

〈I〉N =

N
∑

i,j=1

〈uiu
∗
j 〉 =

N
∑

i=1

〈uiu
∗
i 〉 +

N
∑

i6=j=1

〈uiu
∗
j〉 = 1. (6)
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Thus the number of SPP is the maximum integer of N solved from Equation (6). While considering a statis-
tical model in which each SPP is assumed to come from a distribution, all SPPs are statistically equivalent.
Then, for example,〈uiu∗i 〉 may be written as〈u1u

∗
1〉, and the sum overi = 1, . . .N givesN〈u1u

∗
1〉. Only

two independent averages appear in the intensity, and we write these as

U11 = 〈u1u
∗
1〉, U12 = (〈u1u

∗
2〉 + 〈u2u

∗
1〉)/2, (7)

so that Equation (6) reduces to

〈I〉N = NU11 +N(N − 1)U12 = 1. (8)

Similar to the procedure of treating the intensity, the intensity square is obtained as follows,

〈I2〉N = NU1111 + 4N(N − 1)U1112 +N(N − 1)(U1122 + U1221 + U1212)

+N(N − 1)(N − 2)(4U1123 + 2U1213) + (N − 1)(N − 2)(N − 3)U1234 , (9)

where the terms, such asU1111 andU1122, are the averaged values of the products of amplitudes and gener-
ally denoted by,

Ujklm = 〈jklm〉 = 〈uju
∗
kulu

∗
m〉, (10)

which satisfies,
〈jklm〉∗ = 〈kjml〉 = 〈mlkj〉, (11)

so we haveU1122 = U1221 = U11U22 = U2
11. Henceforth, the modulation indexm of diffraction is defined

by
m =

√

〈I2〉N − 1 . (12)

2.1 The Calculations of the Intensity in SPP

The power spectrum of the phase inhomogeneities,Φ(k), is assumed to have the following form (see e.g.
Blandford & Narayan 1985; Goodman & Narayan 1985)

Φ(k) =







L0, k < 1/L
L0(Lk)

−β, 1/L < k < 1/l
0, k > 1/l

, (13)

whereβ = 8/3 is an index for a Kolmogorov spectrum of turbulence with the structure constantL0 andl (L)
is the inner (outer) scale. In addition, we assume the phase parameters to follow the Gaussian distribution
P (ψ), whereψ represents the phase variablesφ, φ′, andφ′′,

P (ψ) =
1

√

2πσ2
ψ

exp

[

−
ψ2

2σ2
ψ

]

, (14)

whereσψ is a standard deviation of the parameterψ, calculated from the spectrum function of Equation (13)
(see Melrose & Watson 2006; Watson & Melrose 2006). Furthermore, the terms in intensity and intensity
square expressions of Equation (8) and Equation (9) can be calculated by an integral of the probability
distribution over the 6 random variables (see Melrose & Watson 2006), for instance,

〈jk〉 = 〈uju
∗
k〉 =

∫

[

∫ ∞

0

dφ′′j

∫ ∞

0

dφ′′k +

∫ 0

−∞

dφ′′j

∫ 0

−∞

dφ′′k +

∫ ∞

0

dφ′′j

∫ 0

−∞

dφ′′k e
iπ/2

+

∫ 0

−∞

dφ′′j

∫ ∞

0

dφ′′k e
−iπ/2

] P (φj , φk, φ
′
j , φ

′
k, φ

′′
j , φ

′′
k)

∣

∣1 + r2Fφ
′′
j

∣

∣

1/2
|1 + r2Fφ

′′
k|

1/2
exp [iZjk] dφjdφkdφ

′
jdφ

′
k , (15)

with
Zjk = r2F(φ′j

2
− φ′k

2
)/2 + (φj − φk) , (16)

P (φj , φk, φ
′
j , φ

′
k, φ

′′
j , φ

′′
k) = P (φj)P (φk)P (φ′j)P (φ′k)P (φ′′j )P (φ′′k). (17)
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Fig. 2 Modulation index vs. scattering strengthrF/rdiff . The influence by the inner scale of ISM is plotted
as indicated in the Figure.

3 RESULTS AND DISCUSSIONS

The numerical results of the modulation index versus the scattering strengthrF/rdiff are shown in Figure 2.
We find that the modulation index increases with the scattering strength continually from the weak scattering
regime, via the transitional scattering regime, to the strong scattering regime where the modulation index
is fully saturated. The influence by the inner scale on the modulation index is studied, and we find that
the increasing of inner scale makes the modulation index decrease a little at the transitional scattering
regime but little effect in the strong scattering regime. The trends of the modulation index in the weak and
strong scattering regimes are similar to those obtained by the approximated treatments (see. e.g. Narayan
1992; Rickett 1977, 1990), however the SPP method provides the descriptions of modulation index at the
transitional scattering. IfN = 1, a weak scattering case, we have

m ≈ U1111/U
2
11 − 1 , (18)

from which we can obtain that the modulation index increaseswith the scattering strengthrF/rdiff , similar
to the case discussed by Salpeter (1967) (Melrose & Watson 2005). In the transitional scattering the number
N is about 2 or 3 but depends on the choice of inner scale. IfN → ∞, a strong scattering case, we find that
the interchange terms of amplitude products, for instance〈jklm〉 with j, k, l, and m being not all same, are
very small andU1111 ∼ U1122 ∼ U1221) ∼ 1/N2. Therefore, the following approximation is preserved,

m = 〈I2〉N − 1 ≃ NU1111 +N(N − 1)(U1122 + U1221) − 1 ≃ 1 , (19)

a fully modulated scintillation, which has been obtained and discussed by Gwinn et al. (1998).
Moreover, it is remarked that our computation (1-D screen) only gives the small scintillation index

(m <1), which may indicate the validity or error of SPPM in describing the refractive scintillation at
transitional scattering. In addition, a good example of a computation (albeit 2-D) that shows the peak in
modulation indexm(>1) (Goodman & Narayan 2006).
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