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Abstract Unexpected sign, significant magnitude and variable frequency second deriva-
tive exists not only in singular radio pulsars but also in Soft Gamma repeaters (SGRs) and
Anomalous X-ray pulsars (AXPs). This paper shows that thesephenomena are related, and
can be interpreted by a simple unified model, long-term orbital effect. Thus many of pre-
vious “isolated” pulsars may be binary pulsars, i.e., orbital periodPb ≈ (47, 72)min for
AXP 1E 2259+586, andPb ≈ (20, 34)min for PSR J1614–5047,Pb ≈ (3.6, 6.4)min for
SGR 1900+14, andPb ≈ (1.5, 5.8)min for SGR 1806–20. In this model, the frequency first
derivative of these pulsars is still dominated by magnetic dipole radiation. Therefore, it is not
contradictory to the magnetar interpretation of SGRs and AXPs. In other words, the model
of this paper provides new interpretation to higher order ofderivatives of pulse frequency
(second and third...) instead of the first.
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1 INTRODUCTION

Pulsars are powered by rotational kinetic energy and lose energy by accelerating particle winds and by
emitting electromagnetic radiation at their rotational frequency,ν. The slowdown is usually described by

ν̇ = −κνn , (1)

whereκ is a positive constant which determined by the moment of inertia and the magnetic dipole moment
of the pulsar andn is the braking index. By Equation (1) we have,

ν̈/ν̇ = nν̇/ν , (2)

n = 3 for constant spin-dipole angle and dipole moment. Distortion of the magnetic field lines in the radial
direction from that of a pure dipole, pulsar wind, and time-variable effective magnetic moment results in
1 ≤ n ≤ 3 (Manchester et al. 1985; Blandford& Romani 1988). However the frequency first and second
derivatives of observed pulsars show that most pulsars differ fromn = 3 substantially (Hobbs et al. 2004),

|ν̈obs/ν̇obs| ≫ |ν̈/ν̇| = 3|ν̇/ν| .

The main characteristics of the frequency second derivative are: (1) the magnitude of it depends on the
length of the data span; (2) the sign of it can be both positiveand negative; (3) the magnitude ofν̈obs can
be orders of magnitude larger than that expected by magneticdipole radiation. These effects are usually
attributed to the long-term timing noise.

Gong (2005a) introduced long-term orbital effect to explain the puzzles of radio quiet neutron star
1E 1207.4–5209, in which the discrepancy between the measured ν̇obs and the magnetic dipole radiation
inducedν̇ is attributed to the long-term orbital effect of an ultra-compact binary system. This model actually
provides a mechanism that can interpret the three characteristics of timing noise.
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Further more, Gong& Bignami (2006) analyzes why the orbital period of 1E1207.4–5209 can escape
different tests, like modulation of flux density, Doppler shift of pulse frequency, and Roemer delay, and how
to test the binary nature by XMM-Newton and Chandra data in analternative way.

This paper extends the model in two aspects: firstly to different type of pulsars, SGRs, AXPs and radio
pulsars; secondly to higher order of frequency derivatives, which can explain puzzles in braking index and
timing noise. The orbital period of 5 different pulsars are estimated which can also be tested by the method
proposed by Gong& Bignami (2006).

2 THE ULTRA-COMPACT BINARY MODEL

As analyzed by Gong& Bignami (2006), an ultra-compact neutron star (NS) binary with very short orbital
period, corresponds to small projected semi-major axis, and hence short Roemer time delay, the time for
the pulsed light to travel across the projection of the orbitinto observer’s line of sight. In X-ray pulsar,
like 1E1207.4–5209, the corresponding Roemer time delay may smaller than the time resolution of the
instrument XMM-Newton, which observes it.

Moreover the small projected semi-major axis corresponds to small amplitude and the separation of
the sideband (induced by orbital motion) in the Fourier response of the fundamental spin harmonic corre-
sponding to the signal pulse phase. The side bands due to orbital motion are very difficult to resolve from
the noise. Therefore, it is the short orbital period that prevent some ultra-compact binary from detecting.

Although a direct test of orbital effect is very difficult, but the long-term effect of an ultra-compact
binary can still affect the timing behavior of the pulsar, which may result strange phenomena, such as on
1E 1207.4–5209 (Gong 2005a).

The Roemer time delay from the instantaneous position of thepulsar is

z

c
=

r sin i

c
sin(ω + f) , (3)

wherec is speed of light,r is the distance between the focus and the pulsar,f is the true anomaly,ω is the
angular distance of periastron from the node,i is orbital inclination. The orbital motion induced change of
pulse frequency is given,∆ν,

∆ν

ν
=

v · np

c
= K[cos(ω + f) + e cosω] , (4)

whereK ≡ 2πap sin i/[cPb(1 − e2)1/2] is the semi-amplitude,e, Pb, ap are eccentricity, orbital period,
and pulsar semi-major axis respectively.

What if a pulsar is in a binary system, however the effect of Roemer time delay and Doppler shift,
as given in Equation (3) and Equation (4), respectively, has not been measured? In such circumstance the
observational effect is neither as a true isolated pulsar, no as an usual binary pulsar (which has measured
Roemer delay or Doppler shift directly).

When a pulsar has a companion, the time received by the observer (Baryon centric time) is

tb = tp +
z

c
, (5)

wheretp is the proper time of the pulsar, andz/c is dependent of Kepler equation,

E − e sin E = M̄ = n̄t , (6)

whereM̄ , E andn̄ are mean anomaly, eccentric anomaly and mean angular velocity, respectively. Notice
thatt is the time of periastron passage, which is uniform.

Obviously for a true isolated pulsar, we havez/c = 0 in Equation (5), thustb = tp, which means both
tb andtp are uniform. But for a binary pulsar system,tb is no longer uniform, whereastp is still uniform.

Therefore, the proper time of the pulsar,tp, can be used to replace the uniform time,t of Equation (6),
then we haveM̄ = n̄tp.

If ∆ν of Equation (4) is averaged over one orbit period by the measured time,tb, then it
gives (Gong 2005a)

〈∆ν〉 =
xKν

Pb
π(1 − e2

4
) + O(e4) , (7)
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wherex is the projected semi-major axis,x ≡ ap sin i/c.
In practical observation, an observer may average∆ν from 0 to T (T ≫ Pb) throughtb, the time

received by observer, without knowing the orbital period,Pb, at all. Thus the observer tells that the averaged
∆ν is (Gong 2005a)

〈∆ν〉 ≡ β =
xKν

Pb
π(1 − e2

4
) + o(β

Pb

T
) . (8)

The second term at the right hand side of Equation (8) is negligible due toT ≫ Pb. By Equation (8), if a
pulsar is in a binary system, then∆ν (for convenience bracket,〈, 〉 is not used hereafter) measured by the
observer is actually contaminated by orbital effect,β. Comparatively, for a truly isolated pulsar, there is no
orbital effect, and thusβ = 0. And for a pulsar that has already been recognized as in a binary system, the
effect ofβ has been absorbed by binary parameters, such as,Pb, e, andω̇GR, the well known advance of
periastron given by General Relativity.

The contaminated∆ν can lead to unexpected effect on the derivative, and derivatives of pulse fre-
quency. Differentiating∆ν of Equation (8) gives (Gong 2005a)

ν̇L = β
ȧ

a
(1 − ξ) , (9)

wherea is the semi major axis of the orbit, andξ ≡ (1−e2)e2

2(1+e2)(1−e2/4) + e2

1+e2 . By the expression of
ȧ/a (Gong 2005b), it is related to the advance of precession of periastron,ω̇GR by

ȧ/a

ω̇GR
=

M1M2

3M2

1 + e2

(1 − e2)3/2

(

2 +
3M2

2M1

)

(PyQx − PxQy) , (10)

whereM1, andM2 are the mass of the pulsar, companion, respectively andM is the total mass of a binary
system.Px, Py, Qx, Qy are sine and cosine functions ofω (the angle distance of periastron from the node)
andΩ (the longitude of the ascending node) (Gong 2005b). Notice thatȧ/a is a long periodic term, whereas,
ω̇GR is a secular term.

Considering Equation (9), the observational̇νobs is given

ν̇obs = ν̇ + ν̇L , (11)

whereν̇ is the intrinsic one, which caused by magnetic dipole radiation andν̇L is caused by orbital effect.

3 APPLICATION TO SGRS

SGRs and AXPs are believed to be magnetars, the spinning downand magnitude of timing noise of which
are as large as 100 times than that of radio pulsars. The derivatives of SGR 1900+14 satisfies following
relation,
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The derivatives of SGR 1806–20 satisfies following relation,
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The magnetic dipole radiation predicts:

ν̈/ν̇ = 3ν̇/ν , ν(3)/ν̈ = 5ν̇/ν , ν(4)/ν(3) = 7ν̇/ν . (14)

Thus it seems that the relation, Equation (12), can be explained by magnetic dipole radiation. However the
magnitude of̈ν/ν̇ is much smaller than observational ratio given by Equation (12). Therefore, the relation
Equation (12) cannot be explained by magnetic dipole radiation, neithercan Equation (13).
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Is the long-term orbital effect induced contamination of pulse frequency responsible for the phenomena
in Equation (12) and Equation (13)? Through Equation (11) following relation can be obtained,

ν̈obs

ν̇obs
=

3ν̇

ν

ν̇

ν̇obs
+ ω̇1

ν̇L

ν̇obs
, (15)

whereω̇1 ≡ ν̈L/ν̇L. The first term at the right hand side of Equation (15) corresponds to the magnetic dipole
radiation and the second one corresponds to the orbital effect which can change sign and be much larger
in magnitude than that of the first term. This explains why|n| ≫ 3 is inevitable when the second term is
ignored.

Similarly by Equation (11) we can have,

ν
(3)
obs

ν̈obs
=

5ν̇

ν

ν̈

ν̈obs
+ ω̇2

ν̈L

ν̈obs
, (16)

whereω̇2 ≡ ν
(3)
L /ν̈L. Again the left hand side of Equation (16) can be explained by the second term at the

right hand side which is dominant.ω̇1 andω̇2 are generally in order of magnitude,ω̇ or Ω̇. However since
they are all long periodic terms which is dependent ofω andΩ, at certain time the trigonometric function
of ω andΩ may cause a relative large or small values in the derivative or derivatives of pulse frequency, and
hence results the discrepancy between Equation (12) and Equation (13).

The magnetic dipole radiation induced frequency first derivative is always negative; whereas, the long-
term orbital effect can cause both negative and positiveν̇L. The fact that most pulsars have negative fre-
quency derivative indicates that|ν̇| > |ν̇L|. In other words, for most pulsarṡνobs is dominated bẏν, thus
ν̇obs andν̇ have the same sign. Therefore we can assume:ν̇ = σν̇obs, and in turnν̇L = (1 − σ)ν̇obs, where
σ > 0.5. For convenience defineα = 1 − σ, notice thatα can both be positive and negative. Equation (15)
can be rewritten,

ν̈obs

ν̇obs
=

3(1 − α)2ν̇obs

ν
+ ω̇1α , (17)

Actually α can be obtained from observation, from whichω̇1 of Equation (15) can be obtained.
Whereas, the discrepancy betweenω̇1 andω̇GR can be expressed as,

ω̇GR = γω̇1 , (18)

whereγ is an arbitrary value, from which the orbital period can be written,

Pb = 2π
[ 3(GM)2/3

c2(1 − e2)ω̇GR

]3/5

, (19)

whereG is the gravitational constant. HavingPb, the semi-major axis of orbit,a can be obtained. Finally
puttinga, Pb, as well as estimatedM2 (M1 = 1.4M⊙) into following equation (which is given by rewritten
Equation (9)), ρ can be obtained,

αν̇obs = ν̇L =
GMν

2πc2a
ρ
ȧ

a
(1 − ξ) , (20)

whereρ ≡ π sin2 i(M2/M)2(1 − e2/4)/
√

1 − e2. Then one can adjust the companion mass,M2 and
parameterγ, to check whether| sin i| ≤ 1 is satisfied or not in the expression ofρ. Moreover puttingM2,
sin i andPb into Equation (8) one can obtain∆ν/ν induced by the orbital effect, and further check whether
it can be consistent with∆ν/ν given by observation or not. In other words, one can adjust two parameters,
γ andM2 to satisfy the three constraints,α, sin i and∆ν/ν.

By the observation of SGR 1900+14,Ṗobs = 8.2(6)× 10−11s s−1 in May 31-Jun 9, 1998; anḋPobs =
5.93(3)×10−11s s−1 in Aug 28-Oct 8, 1999 (Woods et al. 1999),ν̇obs varies significantly (νobs = 1/Pobs).
By α = 0.32, and through Equation (17) and Equation (19), we can obtainPb ≈ 6.4 min. By assuming
M1 = 1.4M⊙, M2 = 1.4M⊙ andγ = 10, we havesin i = 0.2 andx = 0.04 through the definition ofρ.
Another solution isPb ≈ 3.6 min, M1 = 1.4M⊙, M2 = 0.5M⊙ andγ = 20 as shown in Table 1.
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Table 1 Calculated Rotational Parameters and Estimated Orbital Parameters of Possible Binary Pulsars

Pulsars n ∆8 ν̇L/ν̇obs refs Pb(min) m2(M⊙) sin i x γ e
1E 2259+586 3302 0.42 0.10 1 72 0.1 0.6 0.06 10 0.2

47 0.1 0.4 0.03 20 0.2
SGR 1806−20 –826 5.5 0.32 2 5.8 0.5 0.4 0.03 1 0.2a

1.5 0.1 0.4 0.03 1 0.2b

SGR 1900+14 –3921 4.5 0.30 3 6.4 1.4 0.2 0.04 10 0.1
3.6 0.5 0.2 0.01 20 0.1

PSR J1341−6220 –1 0.032 0.0012 4 27 0.01 0.2 0.001 10 0.1
46 0.02 0.3 0.004 4 0.1

PSR J1614−5047 –81 0.12 0.010 4 20 0.1 0.2 0.01 10 0.1
34 0.7 0.2 0.05 5 0.1

a andb correspond to observational data of 1999 and 2000 respectively. Notice that the orbital parameters of SGR
1806−20 are estimated througḣω2 of Equation (16), instead ofω̇1 of Equation (15) as the rest of pulsars in this
table.ω̇2 is very close toω̇GR, which corresponds toγ ≈ 1. The test of the binary nature of these pulsars can be
performed by settinġνobs = ν̇, andν̈obs = ν̈, in other words,̇νobs andν̈obs satisfies the expectation of magnetic
dipole radiation, and then use orbital parameters to fit the quasi-sinusoidal residual. Orbital period,Pb, predicted
in this table is obtained in the case that the mass of the pulsar is M1 = 1.4M⊙. The error of the estimatedPb

mainly comes from the assumptioṅωGR = γω̇1, typically the error inγ is less than 10, thus by Equation (19),
the error ofPb is P +σ1

b −σ2
(whereσ1 ≡ 3Pb andσ2 ≡ 3Pb/4). n, ∆8 andν̇L/ν̇obs are obtained by references: 1

(Kaspi et al. 2003); 2 (Woods et al. 2000); 3 (Woods et al. 2002); 4 (Wang et al. 2000).

Nevertheless|α| < 0.5 guarantees that the magnitude of the frequency first derivative caused by the
long-term orbital effect is smaller than that of the intrinsic spin down. Therefore the long-term orbital effect
model is not contradictory to the assumption that SGRs are magnetars (Duncan& Thompson 1992), in the
sense thaṫν is still dominated by the magnetic dipole radiation. The model is not contradictory to other
possibilities either (Marsden et al. 1999; Mosquera 2004).

On the other hand, the second order frequency derivatives caused by the long-term orbital effect is much
larger than that of the magnetic dipole radiation induced one for SGRs, in other words,̈νobs is dominated
by ν̈L. And sinceν̈L can change sign at time scale∼ 2π/ω̇GR; it is expected thaẗνobs (alsoν

(3)
obs, ν

(4)
obs) will

change sign at time scale∼ 2π/ω̇GR. This can be tested by observation.

4 APPLICATION TO AXPS AND RADIO PULSARS

The variation ofν̇obs andν̈obs between 1990 January and 1998 December of 11 pulsars is measured using
ATNF Parkes radio telescope (Wang et al. 2000). The signs ofν̈obs of PSR J1614–5047 and PSR 1341–6220
change for two times, which have been attributed to glitch.

The change onν̇obs of PSR J1614–5047 is about1%, thus α = 0.01, and similarly through
Equations (15)–(19), the orbital period of PSR J1614–5047 can be estimated,Pb ≈ 34 min, which cor-
responds toM2 = 0.7M⊙, sin i = 0.2 andx = 0.05 s as shown in Table 1.

The measured time scale of change sign onν̈obs of PSR J1614–5047 is∼ 3.2 yr, which is consistent
2π/ω̇GR ∼ 3 yr corresponding toPb ≈ 34min.

By Equations (8) and (9), ∆ν andν̇L contains orbital elements,a, e, andi, which are all long-periodic
under the Spin-Orbit coupling model. Thus∆ν and ν̇L are trigonometric functions ofω and Ω (Gong
2005a). In such caseω andΩ are non-uniform which may induce abrupt change in∆ν andν̇L, and therefore
mimic glitches in pulsars. The absence of glitches in binarypulsars may be due to that the additional times
delay caused by long-term orbital effect can be absorbed by the uncertainties in parameters such asPb, ω̇GR

andė. Whereas, for isolated pulsars, the only possible absorbtion of long-term orbital effect is by rotational
parameters,νobs and ν̇obs, etc. This explains why glitches always happens in young isolated pulsars. As
shown in Table 1, these pulsars usually have short orbital period, i.e., from a few minute to101 min, which
can make significant timing noise, but the small semi-major axis, x ∼ 10−2 to 10−3, as shown in Table 1,
prevents them from being observed as binary pulsars directly.

The timing noise parameter is defined as∆(t) ≡ log(|ν̈|t3)/6ν, and∆8 means∆(t = 108). By
Equation (20), the second derivatives ofνL is given,

ν̈L ≈ GMν

2πc2a
ρω̈1 , (21)
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Equation (21) indicates thaẗνL ∝ ρ, and by the definition ofρ, we haveν̈L ∝ sin2 i, M2
2 , P

−2/3
b . By the

estimated orbital parameters of Table 1, one can found out why PSR J1314–6220 has the minimum timing
noise,∆8 ≈ 0.0012, and SGR 1806–20 has the maximum,∆8 = 5.5 among the five pulsars.

5 DISCUSSION

Different timing behaviors shown in different kinds of pulsars may caused by the same physics. The long-
term orbital effect provides possible explanations to following phenomena:

1. Magnitude and time scale on the variation of pulse frequency,∆ν.
2. Magnitude, sign and variation of frequency second derivative, ν̈obs.
3. The relationship of ratios of derivatives of pulse frequency like ν̈obs/ν̇obs, ν

(3)
obs/ν̈obs.

4. Why unexpected sign of̈νobs appears much more often than that ofν̇obs.
5. Why timing noise parameters,∆8, of SGRs are much larger than that of radio pulsars.
The new model leads to two predictions. The first one is thatν̈obs, ν

(3)
obs andν

(4)
obs of SGRs, AXPs and

radio pulsars should change sign at time scale∼ 2π/ω̇GR. The test of this prediction may tell us whether
timing noise is caused by the long term orbital effect or not.

The second one is the orbital period of different pulsars listed in Table 1. The two SGRs may be ultra-
compact binary with orbital period of a few minutes, this is anatural extension from the binaries with orbital
period of101 min. If confirmed the population of sources for gravitational wave detectors, like LIGO and
LISA, may increase considerably.

A simple method of searching binary motion is proposed by Gong & Bignami (2006), which uses the
large Doppler shift of an ultra-compact binary and the length of time span (τ ≫ Pb) simultaneously. One
can split the time span evenly into a number of segments, and each segment corresponds to a time scale of
∼ Pb/2. Then fold the odd segments, which may correspond to one shift (say blue); and fold separately the
even segments, which may correspond to the other shift (red).

Having the two groups of folding, one can adjust the length ofeach segment,τi, which corresponds
to the orbital period of the binary, and the initial time,t0, of the segments which corresponds to the initial
orbital phase of the binary, to see ifν̇ > 0 in the folding corresponding to blue shift, andν̇ < 0 in the
folding corresponding to red shift can be obtained.
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